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1 Introduction

1.1 Motivation

Quantum computers are estimated to break modern cryptography within the
next few decades, and the limit of their advantages and computational power is
yet to be determined [9] [2]. With their peculiar phenomenon of superposition
– using qubits that can be 0, 1, or both simultaneously − they are deemed
to revolutionize modern private communications and encryption methods [18].
Currently, security of most cryptosystems rely on the mathematical complex-
ity of factoring large prime numbers or difficulty of solving discrete logarithm
problems [31]. Because of the high cost of solving these problems using classical
computers, cryposystems remain secure and guarantee privacy in communica-
tions. Quantum computers, however, will be able to break those systems faster
with their greater computational power, enabled by qubits, which exist in sev-
eral states simultaneously, decreasing the number of steps it takes a computer
to process an algorithm [18].

In cryptography, it is customary to consider three main characters: Alice, the
sender of the message, Bob, the receiver of the message, and Eve, the eavesdrop-
per who tries to intercept the message. The field of cryptography is concerned
with the security aspect of Alice and Bob’s communication to prevent Eve from
reading messages or decrypting the key.

On the other hand, coding theory, a field that is often confused with cryp-
tography, enables clear transmission between Alice and Bob. Its main goals are
to detect errors and correct them [31].

The standard problem in cryptography involves creating a method for Alice
and Bob to exchange information privately, without having any previous con-
tact. Nowadays, such systems are called public key cryptosystem (e.g., RSA)
that use a channel to establish a key, allowing for secure communications be-
tween Alice and Bob [31]. However, the advent of quantum computers will
make classical public key exchanges insecure and susceptible to quantum at-
tacks [31]. Thus, an eavesdropper Eve will gain an access to the sent messages
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– the plaintext. If the current security systems do not switch to more sophisti-
cated methods of encryption and key exchanges, Eve will be able to read and
meddle with any information transmitted over the internet: starting from text
messages to secret corporate and governmental documents.

This paper will provide a sufficient mathematical background in group the-
ory to formulate the discrete logarithm problem in the general form, examine
a classical example of the public key exchange, give an overview of quantum
computing, discuss the history of the quantum key distribution (QKD) and its
mechanics, the current state of its development and implementations, and ob-
stacles of practical applications of QKD and quantum technology. The paper’s
main focus will be on the potential of quantum computers, current technological
imperfections, and possible future improvements to minimize eavesdropping and
hacking. After all, to become trustworthy and popularized, quantum technology
needs to be advanced in order to ensure security in the years to come.

For more than 30 years, starting with the publication of “Quantum Cryptog-
raphy: Public key Distribution and Coin Tossing,” the BB84 was described as
one of the most famous quantum algorithms [3]. It has been vastly studied and
analyzed by teams of mathematicians, physicists, and computer scientists from
all over the world, who have addressed numerous issues with implementation of
the theory. Their findings were quickly picked up by the firms wanting to take
the quantum computing to the markets (e.g., IBM [16], Battelle [26], and IDQ
[17]). Synthesizing theoretical papers and practices, this paper presents a de-
tailed insight into the main obstacles in QKD. The paper incorporates findings
from the articles, studies, and books from the 1970s to the present day.

1.2 Group Theory

To understand the commonly used key exchange problems and quantum algo-
rithms, we will introduce several underlying concepts, including number theory
and group theory. Group theory is a topic in Abstract Algebra that studies
groups, rings, and fields. In our case, we will use group theory to describe the
discrete logarithm problem and Shor’s algorithm. Below are the fundamental
theorems and definitions to consider:

1.2.1 ”A binary operation ∗ on a set S is a function mapping S × S into S”
[11]. For instance, addition and multiplication are binary operations on integers
or real numbers. Binary operation must be a function that is defined for every
element within the domain and is closed on S [11].

1.2.2 A group (G, ∗) is a set G that is closed under the binary operation, such
that a) the binary operation * is associative; b) there is an identity element e in
G with g ∗ e = e ∗ g = g for all g ∈ G; c) for every element a, there is an inverse
a−1 such that a ∗ a−1 = a−1 ∗ a = e [11].

1.2.3 H is a subgroup of G if it is a subset that is a) closed under the binary
operation *; b) ”with the induced operation from G is a group itself” [11]. We
denote that H ≤ G.
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1.2.4 If G is a group and α is an element in G, then the cyclic subgroup of
G is defined by {αx|x is an integer} [11].

1.2.5 A group G of order k is called cyclic if there is an element α ∈ G such
that G =< α >= {e, α, α2, α3, ...αk−1, αk = e = α0}, where e is the identity
element of the group [10]. Note that < α > represents all powers of α.

1.2.6 We say that α generates G and is a generator of G if < α >= G [11].

1.3 Discrete Logarithm Problem (DLP)

Similar to RSA, discrete logarithm problem (DLP) is a computationally expen-
sive mathematical problem in number theory and has valuable applications in
classical cryptography. First, we will examine DLP using a general cyclic group
G. Using abstract algebra concepts, DLP can be described as following: given
a cyclic group G, a generator of a group α, and a nonzero integer β, find x:

β = αx in G and x = Lα(β) [31][11].

A more concrete formulation of DLP comes from studying a specific cyclic
group Zp; a group Zp is also known as calculations mod p. Observe that Zp is a
more precise way to describe DLP because it is closed under multiplication and
0 is excluded in calculations (unlike in modular arithmetic).

To begin, recall that 13 ≡ 4 (mod 9) is equivalent to saying that 4 is a
remainder of 13 divided by 9: 13 − 4 is divisible by 9. 13 ≡ 4 (mod 9) is
pronounced as ”thirteen is congruent to 4 mod nine.”

Another topic is Euler’s totient function φ(n), where φ(n) denotes a number
of divisors of n that are relatively prime with it. For instance, φ(4) = 2, because
4 is relatively prime with 1 and 3, and φ(11) = 10, because 11 is relatively prime
with {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

To understand the complexities of the DLP through a lens of number theory,
this paper provides the following background:

1.3.1 ”The order of a modulo n... is the smallest possible integer k such that
αk ≡ 1 (mod n),” where n > 1 and gcd(α, n) = 1 [7].

1.3.2 If α has order k (mod n) and αi ≡ αj (mod n), then i ≡ j (mod k) [7].

1.3.3 If α has order k (mod n) and αh has an order k, then gcd(h, k) = 1 [7].

1.3.4 ”If gcd(α, n) = 1 and α is of order φ(n) modulo n, then a is a primitive
root of the integer n.” [7] Alternatively, α ”is taken to be a primitive root mod
p, which means that every β is a power of α (mod p)” [31].

1.3.5 If α is the generator and αm1 ≡ αm2 (mod p), then m1 ≡ m2 (mod
p− 1) [31].

Below is another DLP definition using modular arithmetic, a specific group
of G: given a large fixed prime p, a primitive root α, and a nonzero integer β,
find x:
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β ≡ αx (mod p) and x = Lα(β), for x 1 ≤ x ≤ p− 1 [31].

For example, to find L2(3) when p = 13, we observe the powers of 2 (mod 13)
and compute the sequence 1, 2, 4, 8, 3, ... Thus, x = 4. However, several values
can satisfy the equation: 24 ≡ 216 ≡ 228 ≡ 3 (mod p), but we consider as a
solution the smallest nonzero value out of them to avoid confusion and simplify
problems [31].

As seen in this trivial example, solving problems with small values of α, β,
and p is straightforward by trying out a list of exponents. In general, computing
β from α and x takes at most 2∗log2p steps, but the problem of computing x
from β and α has not yet been solved using an efficient algorithm on classical
computers [19] [25]. Of course, we can solve DLP by manually trying different
integers until we find x that solves the equation; however, it would be infeasible
because of the limit of time. In other words, if we try to run an algorithm to solve
DLP on a classical computer, we are likely to receive a memory overflow errors
because the problem takes too long to compute. On the contrary, quantum
algorithm can efficiently solve this problem in polynomial time [30].

1.4 Diffie-Hellman Key Exchange

Diffie-Hellman key exchange is a classical key exchange problem based on DLP;
it relies on the insecure public channel to allow parties (Alice and Bob) without
previous contact to communicate privately. The fundamental concept is to
exchange the keys between Alice and Bob until they arrive at a common one,
and the eavesdropper Eve should ”find it computationally infeasible to compute
the key from the information heard” [8].

The Diffie-Hellman key exchange represents the following algorithm. One
of the communicating parties (Alice or Bob) picks a large prime p and a large
primitive root (a generator) α. Both may be made public. [31] Then, Alice and
Bob each pick a random large integer less than or equals to p − 2, and keeps
them secret. [31] Suppose Alice’s number is x, she then computes αx in Zp and
sends the result to Bob. Bob picks his number y, computes αy in Zp and sends
the result to Alice. [31] Finally, from each other’s messages, they compute the
session key K = αxy in Zp[31]. In simpler terms:

1. Alice and Bob pick p and α.
2. Alice picks x, computes, and sends to Bob αx in Zp. Bob picks y,

computes, and sends to Alice αy in Zp.
3. Both Alice and Bob compute K = αxy in Zp to get the key [31].

If Eve intercepts αx and αy, she will not guess the key unless she can solve
the Diffie-Hellman problem for x and y. Alternatively, she will need to find αxy

from αx and αy directly, namely a Computational Diffie-Hellman Problem [31].
Either way, similar to the classic RSA algorithm, Eve will face computational
infeasibility because of the limitations of the current computing power.

For Alice, Bob, and even Eve, to compute αx and αy efficiently, they can use
the Square-and-Multiply algorithm, simplifying exponentiation with modular p
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(or in a general group G). The algorithm requires only log2(e) steps instead
of e − 1 where e is an exponent − a significant improvement that speeds up
computations, considering that we work with long numbers.

For example, suppose we need to raise m to e = 83. The first step is to
convert e into a binary representation:

e = (83)10 = 64 + 16 + 2 + 1 = 26 + 24 + 21 + 20 → e = (1010011)2

Thus, m83 = m64 ∗m16 ∗m2 ∗m1.

So, instead of multiplying m until e = 83, this algorithm requires multipli-
cations only up to the highest power of two that is smaller than e (in this case,
it is 64). Note that because we square m, we do not need to perform each step
of multiplication (i.e., we calculate m2, then m4, m8, m16,m32,m64, ... instead
of m2,m3,m4,m5.) To compute m83, we only need to multiply m64, m16, m2,
and m1 together, comparing to modular after each multiplication.

2 Quantum Computing

2.1 Overview

To understand the Quantum Key Distribution, we give an overview of the quan-
tum technologies. In the 1980s, Richard Feynman, also known for his two-slit-
diffraction experiments, proposed the creation of quantum computers to in-
crease computational power for ”the efficient simulation of quantum systems”
[20]. Originally, the idea came from wave mechanics (now called quantum me-
chanics), the dual behavior of light waves, and contributions from Born and
Schrödinger [10]. Similar to a classical computer, a quantum computer has
software and hardware, but its main components are photons, detectors, and
quantum bits (or qubits) − a polarization state of a photon discussed earlier [20].
The underlying concepts include the dual nature of light particles in physics,
Boolean algebra (similar to its use in the classical computers), and statistical
probability that helps to determine the state of electrons or photons [10].

Security is the primary goal of cryptography; however, in practice, it is hard
to achieve unconditional security that guarantees that Eve cannot break the sys-
tem even if she has sophisticated computational power and unlimited time [31].
One-time pad is an example of an unconditionally secure encryption method
that can be used only once. However, this costly method requires a key to
be as long as the message; the key also needs to be exchanged privately in a
secure manner in advance (meaning that Alice and Bob need to have communi-
cated before or sent a trusted courier with the key before) [31]. Because a new
key needs to be generated for each message, these inconveniences make the key
impractical in the urgent situations or if Alice and Bob are located far apart.

On the other hand, quantum cryptography, an improved method of encryp-
tion and key exchanges, would theoretically allow unconditionally secure com-
munications using unbreakable codes. When quantum computers become more
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advance, current algorithms like RSA or Diffie-Hellman’s, all online communi-
cations, and even the internet might become insecure unless quantum codes are
used [1]. The quantum key distribution guarantees that if an eavesdropper at-
tempts to intersect and access the key, she will inevitably change it, thus being
unable to read the messages [1]. Therefore, it is impossible for Eve to mimic
Alice and Bob’s encryption key.

2.2 Introduction to Quantum Mechanics

Technicalities behind quantum mechanics start with explaining a state of a
particle, also known as ”probability wave” or ”condition” [10]. A state can refer
to a single particle or a system of them.

In 1939, P. A. M. Dirac created a standardized notation of the states to
represent linear operations and abstract vectors. Recall that a complex number
z is denoted by z = a + ib, where a and b are real numbers and imaginary
i equals to

√
−1. In vector notation, z = (z1, z2, ...zn). In Dirac notation, a

vector (z1, z2) is denoted as |z〉 [10].
Let’s examine how to describe more complicated scenarios of interactions of

particles. We know from physics that ψ is a wave function of the system (e.g.,
it is used in the Shrödinger equation); in quantum mechanics it is described
by a vector representing quantum states (i.e., the general state of qubit): |ψ〉
(pronounced as ”kets”) [1]. ”Bra” describes a complex conjugate of a wave
function, denoted as 〈φ| [10]. The product of the ”ket” and ”bra” is 〈φ|ψ〉, a
scalar called ”bracket” (also written as ”bra–ket” or ”bra/ket”) [10]. If 〈ψ|ψ〉 =
1, then ψ is normalized [10].

In Quantum Mechanics, states exist in a Hilbert space or we can say that
states form a basis of the Hilbert space. Unlike Cartesian coordinates or Eu-
clidean plane, Hilbert space goes beyond 2D and 3D spaces and can describe
finite or infinite dimensions [10]. A quantum state can be described as a vector
in the Hilbert space [10].

Now that we have introduced quantum notations, we will explain quantum
phenomena. As we have noted, there are numerous difference between classical
and quantum computers. First, classical computers use bits that represent 1’s
or 0’s, while quantum computers use qubits that can be 1, 0, or both at the
same time [18]. In mathematical terms, a qubit is a normalized state vector
that exists in the Hilbert space C2, where:

|0〉 =

∣∣∣∣10
∣∣∣∣ and |1〉 =

∣∣∣∣01
∣∣∣∣ [10].

In more general terms, an element in C2 can be written as a combination of
two states, where α and β are complex numbers:

ψ± = α|0〉 ± β|1〉 and α2 + β2 = 1 [1].

The phenomenon of storing a qubit of 0 and 1 simultaneously is called su-
perposition; we can think about it as a ”mixed wave” of two normalized waves
ψA and ψB :
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ψ± = 1/
√

2(ψA ± ψB) [10][1].

It also can be written as

ψ± = 1/
√

2(| ↑↓〉 ± | ↑↓〉),

where ↑↓ denotes polarization state of a photon (an equivalent to the spin of
an electron) [10][1]. Feynman described the state of photon polarization |ψ〉, in
terms of two orthogonal vectors:

ψ = α| ↑〉+ β| ↓〉 or ψ = α| ↗〉+ β| ↘〉 [20][1].

We will discuss polarization states and bases more in section 3.1 when describing
QKD.

We should note that this work in C2 is a simplified version of the actual
interactions of particles. Moreover, these formulas do not allow us to predict
the result of the interaction between two waves or particles: they only give us a
probability of the the event happening (see Heisenberg’s principle of uncertainty)
[10].

In addition to qubits and superposition, quantum computers rely on several
other key concepts that enable higher computational speed, including:

Quantum entanglement. Quantum entanglement is an interaction between
several particles, which prevents us from describing a single particle in the en-
tangled state without the presence of another one [16]. Imagine the following
scenario. After a contact of two particles, A and B, they are separated; we
cannot precisely describe either of them individually, unless we bring A and B
back together [15].

Quantum interference. Quantum interference is an interaction between two
quantum states that, as a result, transform one another (conceptually analogous
to the Young’s double slit experiment). [16]. It can be understood as two waves
constructing or destructing each other.

Quantum gates. Just as classical computers need circuits to function through
logic gates based on the Boolean algebra, quantum computers need special quan-
tum gates to accommodate qubits and run quantum algorithms [1].

2.3 Current Challenges

Several research models for quantum machines exist now, and some are soon-
to-become commercialized [16][26][17]. For example, both quantum Turing Ma-
chine and quantum gates already serve as computational models but they en-
counter several practical difficulties [1]. To advance the creation of quantum
computers there are several crucial practical and theoretical problems that need
to be solved. In addition to the security problems, examples and explanations
of those include:

2.3.1 Decoherence. Qubits are the underlying building blocks of quantum
computers; however, they are hard to implement in real life. Outside factors
(e.g., noise in the quantum channel) and interaction between particles easily
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affect and change quantum states [1]. Decoherence is also a main obstacle
to the NMR quantum computers; in 2001, researchers from IBM have used ”a
predictive tool for modelling quantum errors” to create a decoherence-free model
[32].

2.3.2 Quantum Computer Structure. To build functioning quantum hard-
ware, one need to combine phenomena of superposition, quantum interference,
and quantum entanglement without decoherence [16]. Additionally, the quan-
tum gates and quantum randomness need to be addressed as well. Only when
all these criteria are satisfied in the quantum architecture can the qubits be
generated [1][16].

2.3.3 Quantum Software. First, hardware is often required for software test-
ing but its architecture is still under development [1]. Quantum software poses
several obstacles from implementing new quantum programming languages to
developing algorithms and writing practical quantum programs (e.g., Shor’s al-
gorithm is discussed in the section 3.4) [1].

2.3.4 Communication Distance of QKD. Current quantum communication
distance can reach only up to several hundreds of kilometers, an insufficient
coverage for global purposes [14]. For example, the Battelle company based
in Ohio installed the first commercial version of the QKD in the U.S. [26].
Battelle is currently designing a ”QKD Trusted NodeTM” that should expand
the communication distances by installing such nodes across the country [26].
Their estimation of the maximum distance is 700 km with a goal of connecting
Columbus, Ohio to Washington, DC [26]. However, the problem of connecting
Western and Eastern Hemispheres is yet to be solved via this method.

2.3.5 Speed. As mentioned before, the superposition phenomenon allows for a
faster speed of quantum computers [18][16]. As for the QKD, because quantum
keys need to be sufficiently long to provide secure communications, the quantum
key generation rate appears to be much slower than expected so far (currently,
the maximum rate is approximately 1 Mbps) [14].

2.3.6 Number of Qubits. As mentioned above, decoherence presents the main
threat to the formation of qubits (and their deformation). Even if all criteria
for quantum phenomena are satisfied, decoherence will reduce the quantum
states and all information that they carried will be lost [16]. Thus, qubits exist
in unstable, hardly-achieved states with the ability to undermine the entire
quantum computer system.

2.4 Applications of Quantum Technology

Quantum computers also allow for quantum communication or quantum telepor-
tation as a part of quantum information theory. One can send large quantities
of classical information encrypted as quantum states on higher speed with ef-
ficient error correction because of the quantum communications [1]. Claude
Shannon proposed to encrypt information in quantum states instead of using
bit strings in 1948 [29]. His algorithm transforms alphabetical messages into
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quantum states that are later sent via quantum channel to the recipient who
then converts them back to the algorithm [29].

Quantum teleportation uses several entangled particles that are related to
each other by their nature [1]. In other words, Alice and Bob share quantum
entanglement in advance, and construct a quantum circuit that can be disrupted
by any interference [6]. However, the circuit preserves the information despite
alterations, even if qubits were measured (recall that qubits change their span
according to the base used to measure them) [6]. This phenomena is justified by
the entanglement and can be used inside a quantum computer for teleportation.
Quantum teleportation is widely incorporated in quantum communications and
requires both classical and quantum channels to send information [1].

Quantum programming is another application of quantum computers that
can be implemented via software or hardware. Both are under development and
the latter requires a lot of time and financial resources to advance [1]. Program-
ming languages, like Quantum Computational Language (QCL) and Quantum
Lambda Calculus, allow a simulation of costly quantum gates because of their
independence of hardware, for instance [1]. They also ”deal with quantum al-
gorithms at the abstract level by means of quantum programming languages”
[1]. Most of the current quantum languages are extensions of classical languages
like C or C + + [1].

Artificial Intelligence, a fast-growing field nowadays, will also benefit from
the quantum computer’s computational power, performing large AI algorithms
at ”ultra high speed” [1]. All scientific simulations and optimizations, from
the fields of mathematics and finance to chemistry and physics, can already be
processed on the online quantum computer simulator [16].

3 Quantum Key Distribution

As one of the most mature and advanced quantum cryptosystems, quantum
key distribution (QKD) is a type of quantum communications and quantum
information processing [34]. In theory, QKD allows for unconditionally secure
communications between Alice and Bob − a perfect way to communicate sen-
sitive information. It creates a secure random key, relying on peculiar qualities
of photons and uncertainty principle. In practice, it requires well-functioning,
widely spread quantum computers to maintain stable states of qubits in order
to store and pass information. Unlike quantum teleportation, hardware and
circuits needed for successful QKD are far more intricate [6]. In the follow-
ing sections, we will explain how quantum computers will change a network of
information transmissions.

3.1 QKD: History and BB84

The need for a new secure key led to the discovery of QKD, and its “best-known
QKD protocol (BB84) was published by Bennett and Brassard in 1984” [23]. It
guarantees the unconditional security, despite Eve’s capabilities or intercepted
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information. In addition to this, the receiver Bob can detect if the transmitted
message was intercepted as the concept of the security largely depends on the
physical properties of the key: photons and the uncertainty principle [3]. The
original paper, “Quantum cryptography: Public key Distribution and Coin Toss-
ing,” describes that the information is encoded into the bits of “single photons
with polarization directions 0, 45, 90, and 135 degrees” (see the table below)
[3].

Bit 0 1
Direction ↑→ ↗↘
Basis X +
Name diagonal rectilinear

Alice (the sender who encrypts the message) first chooses a random string
of bits, where 0 corresponds to the first two black arrows, representing the
polarization directions of the photons, and 1 to the second two. Then she picks
a “random sequence of polarization bases (rectilinear or diagonal)” and sends
the sequences of strings of photons through corresponding bases to Bob [3].
Bob, in his turn, randomly picks a basis for each received photon, without any
information about the basis or a photon, and translates a photon into a bit [3].
However, because of the Heisenberg’s uncertainty principle, which states that
one can only know the position or momentum of an electron, Bob (or Eve) will
decode any polarized photon as “0” if they use diagonal basis, and “1” if they use
the rectilinear. Thus, Bob receives meaningful information only from the bits
that he has guessed correctly. In addition, some of the photons “would be lost
in transit or would fail to be counted by Bob’s imperfectly-efficient detectors”
[3]. With basic counting, one would approximate that Bob will correctly guess
about half of Alice’s key.

To find the matching bits between Alice’s sent key and Bob’s received key,
they may use any public communications channel even if Eve might intersect it
(but cannot inject or alter it)[3]. Then, after Bob reveals the bases he used for
decryption and Alice confirms the correct guesses, they discard the ones that
did not match, and generate a key from the remaining bases [23].

To limit the length of the sent key and increase the yield rate efficiency,
Hwang et al. proposed a modified version of the QKD BB84 called the Hwang
Protocol, which forms the key from all sent photons, instead of a half of them
(as it is in the case of BB84) [14]. Because of the implemented decoy-state,
the Hwang Protocol also allows for a transmission distance up to 140 km, a
substantial improvement from the first experimental distance of 30 cm in 1989
[14].

3.2 QKD Components and Requirements

Although the hardware of current quantum computers requires advancement,
there are several key components to the QKD transmission. Similar to the clas-
sical algorithms of encryption (e.g., RSA or Diffie-Hellman key exchange), QKD
requires a channel for message transmission, a number randomizer, and error
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detection and correction algorithm [23]. A quantum channel serves the same
role as the classic channel: it provides virtual space Alice and Bob to exchange
the key without any prior secure contact. An efficient number randomizer (or
random number generator) helps to create a random bit sequence or choose a
basis. An error detection and correction algorithm based on the coding theory
provides a clear transmission between Alice and Bob and enables the shortening
of the key length [13].

Additionally, successful QKD transmission needs light sources that emit pho-
tons or attenuated laser pulses, standard linear optical components (e.g., beam-
splitters, amplitude and/or phase modulators), and single photon detectors that
limit light detection [23].

IBM Q provides to the public an online simulator of a quantum computer,
”composer,” using an IBM Cloud platform [18]. It teaches how to approach
quantum software, starting with basic definitions and explanations. This sim-
ulator can also mimic procedures that are up to 32 qubits long, as opposed to
IBM’s implementation of Shor’s algorithm in 2001 mentioned in section 3.5 [16].

As mentioned in 2.2.4, an operational distance of QKD is rather limited now.
Even with working components, QKD will not be a convenient method if the
solutions like ”Trusted Nodes” guarantee unconditional security [26]. An alter-
native to the connections on the ground is a satellite connection [21]. Satellite-
to-ground connect on has proven to function on greater distances and have fewer
losses of messages (due to alterations of the photon’s state or loss of the entan-
glement) [27]. In 2016, a group of Chinese scientists developed and successfully
launched a satellite ”Micius,” designed for quantum experiments. Through a
decoy-state QKD transmitter based on the BB84, it can communicate over a
distance of up to 1,200 km [21]. The BB84 encoding module incorporates the
main components discussed before, including ” a half-wave plate, two polarizing
beam splitters and a beam splitter, which randomly prepares the emitted pho-
tons in one of the four polarization states” [21]. It has a thermal noise device
that generates a 4-bit random number, controls several lasers, and determine
polarization and intensity levels of of photons [21]. Electric control of these
lasers obtains the average photon number in the output of the telescope: µ of
high intensity of the original state is 0.8, µ ”moderate” is 0.1 (as described in
the BB84 protocol), and µ in vacuum is 0 [21] [23]. To transmit a message, the
researchers sent these several intensity levels with different probabilities to max-
imize the secrecy of the photon emission rate as a security measure [21]. They
could successfully create and transmit the key with an experimental quantum
bit error rate averaged 1.1% after error corrections [21].

Despite the impressive findings, this over-space transmission still encounters
major problems such as noise in the channels, ”channel loss, including beam
diffraction, pointing error, atmospheric turbulence and absorption” [21]. In
addition, weather and atmospheric conditions can affect the transmission, jeop-
ardizing its efficiency [21]. Realizing the fullest potential of quantum computing
and fixing problems will require costly research and development.

For instance, the communication length can be increased by adding more
satellites and transmitting the key on the ground through metropolitan quan-

11



tum networks or quantum nodes, for instance [26] [21]. Overall, after a few
improvements, this satellite transmission has a potential to provide an uncon-
ditionally secure quantum channel between two places on Earth.

All these methods to use QKD to encrypt messages require expensive quan-
tum computers, but will all of us need to have them to cherish privacy? For-
tunately, the answer is no. In 2007, Boyer et al. published a paper describing
how Alice and Bob can securely exchange messages when only the sender has
an access to the quantum technology [5]. This semi-quantum key distribution
scheme (BKM07 SQKD) is theoretically secure against attacks and show if Eve
is present [34][5]. Bob would only need to be able to perform the following
operations:

(1) Measuring qubits using basis (|0〉 or |1〉);
(2) Requesting retransmission of the qubits;
(3) Prepare a qubit in the basis (|0〉 or |1〉);
(4) Receiving and sending back qubits without disturbing them [34].
If these four operations are satisfied, then Bob and bits are considered as

”classical,” while Alice can continue to operate a quantum computer [34]. How-
ever, the system raises several security concerns, some of which are discussed in
the next section.

3.3 Attacks on QKD

As it has been shown before, theoretically, if Eve intercepts the channel with
the Alice’s message, she would randomly try bases to decode. Just as Bob, she
would change the spins of some photons; as a result, during the public exchange,
she would not be able to match her decrypted sequence with Alice’s and Bob’s.
In addition, eavesdropping will alter the original message.

To check for the presence of Eve, Alice and Bob “randomly [select] subset
of data and verify that it is below a certain threshold value,” using a quantum
bit error rate [3]. Alice and Bob can also use error detection and correction
from the coding theory by adding detection bits in the message (classically, in
the end), or use ”the polarization states of two-photon system” [1]. Because of
the one-time pad principle of the BB84, Alice and Bob must have the message
retransmitted if the threshold value is greater than expected.

However, there are several difficulties in implementing theoretical QKD and
detecting the presence of an eavesdropper. First, the single-photon sources,
“imperfect devices, and lossy/noise channel” make the channel susceptible to
eavesdropping, thus require further improvements in QKD [22][33]. The origi-
nal paper on BB84 assumed the use of “phase-randomized weak coherent pulses
(WCP’s) with a typical average photon number of 0.1 or higher” [23]. How-
ever, the weak photon sources can likely emit more than one photon at a time,
jeopardizing the system:

If there are more than one photon, Eve could remove one of the
photons and store it. Otherwise, she blocks the one-photon pulse
with a certain probability, which can be hidden by the channel loss.
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At the end of the protocol, she would utilize these photons to learn
partial information about the key without introducing any errors
[22].

Such photon-number splitting (PNS) attacks happen as follows: Eve takes
at least one of the split photons, stores it in a quantum memory, sends the rest
to Bob, receives Alice’s information on the basis, and decrypts the information
[33]. Additionally, Eve can simply obtain the number of photons by counting
them without disturbing their spins [22]. In either case, Bob cannot determine
the eavesdropper unless he has access to the statistics of photons or to the
detection rate of photons [12]. For instance, he could use a photon-number
resolving (PNR) device that determines the ”number of photons in pulse or
time-gap with high fidelity” or ”bright reference pulses (BRPs) [that] prevent
against the PNS attack” [12][33].

There are a few ”true” single photon emitting sources that function at room
temperatures [12]. However, the technology is costly, premature, and does not
provide a high rate of emission [12]. A more plausible alternative to them is an
attenuated laser light [17].

In addition, quantum hacking can affect any part of the QKD setup. The
types of such attacks include time shift, time information, detector control,
channel calibration, phase remapping, Faraday mirror, phase information, and
device calibration [23].

For instance, device-independent quantum key distribution (DIQKD) pre-
vents Eve from installing a forged photon emitting device that she controls and
gaining information to Alice’s and Bob’s measurements of quantum states [24].
As a provable secure system, DIQKD does not depend on the dimension of the
Hilbert space, photon emitting sources, operators, state measuring devices or
states of the input [24].

3.4 Shor’s Algorithm

Without quantum algorithms, quantum computers will not be helpful in solving
concrete problems. In this section, we will discuss a quantum algorithm that
poses a threat to the classical cryptography and key exchanges.

Peter W. Shor has developed an algorithm for quantum computers that
solves both prime factorization (the problem on which RSA relies) and the dis-
crete logarithms problem (the basis of Diffie-Hellman key exchange, section 1.4)
[30]. Similar to the quantum Turing machine and quantum gate arrays, Shor’s
algorithm runs in polynomial time as opposed to exponential − the most effi-
cient algorithm known to find prime factors [35][30][32]. The keystone concepts
include modular arithmetic and group theory or, more precisely, it ”is a special
case of the hidden subgroup problem” [30][28].

Below is a step-by-step description of the Shor’s Algorithm to factor a large
integer N :

1. Select an integer x such that x < N ;

13



2. Compute gcd(x,N) = a. Finding greatest common divisor can be done
by the Euclid algorithm in polynomial time;

3. If a 6= 1, then a is a factor of N and we are done;
4. Otherwise, find the order r of x in the group Z∗

N (a multiplicative group
of integers mod N excluding 0). Using modular, the same can be described as
xa ≡ 1 (mod N);

5. If r is odd or xr/2 ≡ −1 (mod N), repeat with a different x. Compute
gcd(xr/2 ± 1, N). If at least one of the gcd is not 1, then it is a factor of N
[1][30].

This algorithms transforms the problem of prime factorization into the prob-
lem of finding the period of a function and solves it through the Discrete Fourier
Transform [1]. The main difficulty of the Shor’s algorithm is to find r, and that
is where quantum mechanics and quantum algorithms come to help.

In his original paper, Shor pointed out that current quantum computer lim-
itations need to be overcome prior to the full implementation of the algorithm
[30]. The simulation of Shor’s algorithm to factor 15 was successfully performed
on a 7-qubits Nuclear Magnetic Resonance (NMR) quantum computer by IBM
in 2001 [32][1]. After the original paper by Vandersypen et al., with a minimiza-
tion algorithm of the same purpose as Shor’s, the largest number known to be
factored is now 56153 using only four qubits in 2012 [36].

Once quantum computers become widely available, Shor’s algorithm can be
used to break classical algorithms. Theoretical algorithms provide solutions to
the complex mathematical problems that are currently deemed computationally
intractable; however, to overcome the practical barrier and pose a threat to the
current developments, quantum technologies need to solve crucial problems such
as sufficient number of qubits and decoherence (discussed in section 2.2) [28].

3.5 Conclusion

The remarkable discovery of Shor’s algorithm has brought more attention to
quantum technology as it has shown its potential. Although quantum comput-
ers have yet to become widespread, they bear an immeasurable potential to
revolutionize our perception and use of electronic security systems. What will
we do when security systems become obsolete?

We cannot change the laws of physics; we can work around them and over-
come obstacles in our way. Of course, it is still a quite long way to solve current
quantum challenges: from advancing quantum software and hardware to edu-
cating students in math, physics, cryptography, and computer science at the
same time to work with quantum technologies.

Current security systems may fall and give in to the quantum technology,
starting a new era of privacy. Even now, in the current technological world,
privacy and security are one of the most important values as the concept of a
“Big Brother” progresses. From social media and online purchases to satellite
findings and governmental secrets, we are becoming more and more depended on
the online interactions. Without secure cryptosystems, the world would be on
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the verge of chaos. Just imagine that you are unable to transfer any information
over the internet without an eavesdropper intercepting it.

The promises that quantum computers make cannot leave us indifferent to
their potential. The potential to solve problems in a couple of hours that used to
be deemed computationally intractable, advance AI or even create teleportation
is mesmerizing.

Will qubits create a world of unconditional security or destroy our privacy?
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